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Thermally induced convection in a rotating cylinder of fluid heated from above 
and strongly influenced by centrifugal accelerations is treated using boundary- 
layer methods. As in the theory of homogeneous rotating fluids, the horizontal 
Ekman layers control the inviscid axial flow. The solution also largely depends 
upon the thermal conditions assumed at the side wall, and if these be insulated, 
consideration of the side-wall boundary layers is necessary for complete speci- 
fication of the problem. For perfectly conducting side walls, the side layers do not 
influence the zeroth-order flow, but contribute a second-order correction, which 
would be absent if the lateral boundaries were ignored. The critical parameters 
governing the solutions in both cases are found to be y and the group g/3e-*, 
where y is the aspect ratio, (+the Prandtl number, e the Ekman number, and /3 the 
thermal Rossby number for the flow. Boundary-layer solutions are given for a 
wide range of parameters, and gravity is seen to have at  most only a local effect 
on the flow near the side walls. 

1. Introduction 
It is well known that a density gradient perpendicular to an acceleration will 

produce motion no matter how small the gradient may be, since the pressure 
cannot balance the variations in the body force so produced. The most common 
examples occur, of course, in fluids in a gravitational field which are heated 
differentially in the horizontal. If the system to be studied undergoes rotation, 
however, the centrifugal acceleration may play a role analogous to that of gravity 
in producing motion. 

A common example occurs in the case of rotating machinery, where centrifugal 
accelerations may become quite high. The use of hollow turbine blades to in- 
crease heat transfer via centrifugally driven convection has been described by 
Schmidt (1951). An early analysis of such a thermosyphon was given by Lighthill 
(1953); in it the centrifugal acceleration was considered constant and the Coriolis 
acceleration due to rotation was neglected. Such neglect is valid in tubes, where 
the magnitude of the Coriolis acceleration is limited by geometry; but there 
exist many cases of fluid motion in which the centrifugal acceleration is spacially 
varying and the Coriolis acceleration non-negligible. The simplest of these is a 
heated rotating cylinder of fluid; but only a few pertinent theoretical analyses 
have appeared in the literature to date. 
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Centrifugally driven convection subject to variable centrifugal and Coriolis 
accelerations was considered by Ostrach & Braun (1958). Aright circuIar cylinder 
Of fluid was allowed to rotate about its axis, and was heated differentially in the 
vertical, i.e. perpendicular to the centrifugal acceleration. The following con- 
clusions were reached: (i) the velocities are small, of order &AT, where a is the 
coefficient of thermal expansion and AT is the imposed temperature difference, 
(ii) the Coriolis force acts to oppose any centrifugally produced radial velocity, 
and (iii) rotation has little effect on the heat transferred across the cylinder. This 
last conclusion was deduced from (ii) and a consideration of the energy equation 
for the system. As we shall see, it isinvalid for a boundary-layer flow, and the heat 
transfer may be augmented by rotation. 

Three centrifugally driven problems have recently been considered by Riley 
(1967). In  the first of these, that most important to  our discussion, the tempera- 
ture of a single disk, rotating with its infinite environment is raised (lowered) to a 
new temperature. There results radial inflow (outflow) in a viscous layer of thick- 
ness O( (u /w) * ) ,  where u is the fluid kinematic viscosity and w the angular velocity 
of the disk. The equations yield to a von Kkm&n (1921) similarity transforma- 
tion, thus removing the radial dependence, and the initial motion was calculated 
using a Thiriot (1940) time dependence. In  the case of a cooled disk, the induced 
axial flow is toward the disk and a steady state is possible. For this steady state, 
a perturbation solution for small changes in wall temperature yields a thin 
viscous layer imbedded within a ‘thermal layer ’ in which conduction balances 
the convective effects of the axial flow. For larger temperature differences, the 
steady state is calculated using the Pohlhausen integral method. Thermally 
induced ‘ spin-up ’ and oscillatory motions were also considered. 

Numerical solutions for a cooled diskrotating with its environment are given by 
Hudson (1968a) for high Prandtl number; in this case the thermal and viscous 
layer thicknesses becomc of the same order. 

Convection in a fluid heated from above and contained between two infinite 
isothermal coaxial disks has been considered by Hudson (1968b). The flow is 
radially inward in the top Ekmanlayer and outward in the bottom layer. Linking 
of the resulting axial flow in the inviscid core is accomplished by Ekman suction 
due to the thermally induced tangential velocity in the core. The solution was 
found to depend upon the critical parameter CT,&-), where c is the Prandtl 
number, E is the inverse rotational Reynolds number, and /3 is the product aAT. 
An asymptotic solution for cr/3d 9 1, e 0 was constructed. Thermal layers of 
dimensionless thickness O(d/aP) form near each disk. The heat transferred to the 
bottom disk is great, while that transferred from the top disk is zero. 

A similar but radially bounded problem was considered by Barcilon & Ped- 
losky (1967b). The inclusion of insulated side walls is seen to have a definite 
influence upon the flow. Because of the stratification, the side viscous boundary 
layers no longer have the Stewartson double structure occurring in homogeneous 
rotating fluids, but 8 new layer replaces the familiar E* layer because of the 
domination of gravitational buoyancy over the Coriolis force near the sides. 
More importantly, consideration of boundary-layer components of the tempera- 
ture in these layers is necessary for the determination of the flow. Ekman suction, 
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an essential feature of the similarity solutions described above, is absent in some 
cases. Because of these results, the authors note that unbounded analyses clearly 
may not represent any physically realizable situation. A perturbation solution 
for small centrifugal acceleration relative to gravity was given. 

Since in many engineering applications centrifugal accelerations may be quite 
high, we will here treat convection in a cylinder in the limit of an infinitely high 
ratio of the centrifugal acceleration to that of gravity. Solutions will be given for 
a large range of parameters, and the conditions under which gravity has no 
effect on the flow will be deduced. 

2. Basic equations 
Consider a cylinder of radius a and height 2h rotating about its vertical axis 

with a constant angular velocity w.  The cylinder is assumed to contain a homo- 
geneous Newtonian fluid which is heated isothermally from above. The sides 
are considered to be either insulated or perfectly conducting, and the rotational 
rate is assumed to be high, so that the characteristic centrifugal acceleration 
w2 a is large compared to gravity. The equation of state of the fluid is taken as 

P = Po(l-a(T-To)), (2.1) 
where the subscript denotes a reference quantity, and a is the coefficient of 
thermal expansion, which is taken as zero in the equations of motion, except 
when multiplied by either the centrifugal force or gravity. This is a generalization 
of the Boussinesq approximation to rapidly rotating fluids, and implies that the 
fluid is incompressible, i.e. 

where q is the velocity. Assuming other fluid properties to be constant, the equa- 
tions of motion relative to a co-ordinate system rotating with the cylinder become 

q.Vq+2w(kxq)+w2rol(T-TO)i-ga(T-T0)k = -po1Vpf+uV2q, (2.3) 

where k and i are the unit vectors in the vertical andradial directionsrespectively, 
g is the acceleration of gravity, u the fluid kinematic viscosity, and 

v.q = 0,  (2.2) 

P f  = P + v o 9  -Po[*1W2r211, (2.4) 

where p' is the perturbation pressure. Defining a polar cylindrical co-ordinate 
system (T, z, 0) with the origin at  the centre of the cylinder, and with correspond- 
ing velocity components (u, w, v), and taking the flow to be axially symmetric, a 
stream function may be defined such that 

w = -~-1@ r ,  u = r-'@s. (2.5) 
If  T, and Tb denote the top and bottom temperatures respectively, we choose the 
following dimensionless quantities (starred), 

r* = r/a, z* = z/h, 

2 J 
3-2 
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Cross-differentiating the r and z components of (2.3) to eliminate$, and dropping 
the stars, the dimensionless equations of motion become 

Note that the velocity scale is such that there is an inviscid balance between the 
Coriolis acceleration and the centrifugal acceleration which causes the motion. 
The constant property non-dissipative energy equation is 

In  these equations, 9; and V; are the two-dimensional operators 

(2.10) 

The appropriate boundary conditions are 

T = + l ,  ~ = ? l ,  

and either T, = 0, or T = z, r = 1, 

together with the dynamical conditions 

on all solid boundaries. 
v = 4 = a@/an = 0 

The five important dimensionless parameters entering into the problem are 

E = v/2wh2 

c = cP,u/k 
p = &AT 
y = u/h 

A = g/w2a 

(the Ekman number), 
(the Prandtl number), 
(the thermal Rossby number), 

(the acceleration ratio). 
(the aspect ratio), 

Many interesting situations fall into the range {e ,A,P)  < 1,  {y,  .-) 2 O(l),  and 
an asymptotic solution to the problem will be found for E ,  A -+ 0, p < 1. As we 
shall later deduce, the range of c for which the solutions are valid will be deter- 
mined by a restriction on the value of the group crP~-*. 

3. The perturbation expansion 
We begin by assuming that the temperature field is given by the conduction 

solution T = x ,  and solve for the resulting flow field. This method of attack has 
the advantage of mathematically uncoupling the dynamical variables from the 
temperature, while elucidating the basic nature of the flow. Then, by calculating 
a perturbation correction to the conduction profile, important conclusions can 
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be drawn concerning the details of the solution in the general case. In particular, 
we will deduce that (i) as in the case of homogeneous rotating fluids, the horizontal 
Ekman layers control the axial flow in the inviscid core, (ii) the boundary layers 
along the vertical walls of the container have considerable importance in de- 
termining the temperature field, and (iii) for sufficiently small b, the solution 
depends upon p, r and B only in the product C T / ~ E - * .  

Assuming then that T = z, the resulting flow equations for /3 < 1 are 

- v, + r = er--19$ @, (3.1) 

@* = ePy(rv) .  (3.2) 

Solutions to (3.1) and (3.2) away from the side walls are obtainable by assuming 
the axial velocity to be a function of x alone, and v to depend linearly upon r.  
These solutions, which yield the characteristic Ekmanlayersof thickness O(d) ,  are 

I vo = r[z - e-5 cos [ + ec* cos [*I, 
Br2 (3.3) @ - ~ [ 1 - e-c(cos [+ sin [) - ec*(cos [*(cos [* -sin [*)I, 

O -  24 

where 5 = ( z+  1)/(2e)* and [* = ( z -  1)/(2e)+ are the appropriate stretched co- 
ordinates near z = - 1 and z = + 1 respectively. Note that in balancing the 
inviscid ‘thermal wind ’, v = rz, the well-known Ekman suction induces a weak 
O ( d )  downward flow in the core. The radial flow is inward in the upper Ekman 
layer, outward in the bottom layer, and zero in the core due to Coriolis domina- 
tion there. These solutions clearly do not apply near the side walls, and must be 
amended by a further boundary-layer analysis. Layers parallel to the rotation 
vector were first discussed by Stewartson (1957) and in general have a double 
structure of thicknesses ef and sf. In  this case, v is an antisymmetric function 
of z and only the ef  layer arises. Denoting the core plus Ekman layer solutions 
(3.3) by a subscript 0, we then introduce boundary-layer functions, 6 and 8, such 
that 

8 and $ are then assumed ‘steep ’ near the side walls, and must necessarily decay 
rapidly away from the boundary. To solve for these boundary-layer corrections 
to (3.3), the region near the side walls is then divided into the subregions 

z 5 1 = O(l),  r -  1 = o(ea), 

2 5 1 = O ( d ) ,  r -  1 = O ( d ) ,  

z 2 1 = O(s*), r - 1 = O(e4). 

Representations for 6 and 1% are constructed for the first two of these subregions, 
and the requirement that these match asymptotically over adjacent boundaries 
determines the solutions. The success of this method, first ascribed to Greenspan 
& Howard (1963) and elaborated upon in detail by Hunter (1967), depends upon 
the fact that the side layers are thicker than the Ekman layers, and matching is 
accomplished by consideration of the ‘Ekman extensions’, z +  1 = O(&, 
r -  1 = O(d).  I n  this manner, consideration of the square region r -  1 = O(d) ,  
z 1 = O(&) is avoided, The solutions in the side layer and extensions can then 



38 G. M .  Homsy and J .  L. Huason 

be constructed as a power series in €8,  and the leading terms, valid away from the 
top and bottom are 

(3.4) 

where 

p = (1 -r)y/& J 
The solutions for the extensions are of the Ekman type, i.e. 

6 = B(p)[ - 1 + e-5 cos 51, 

near z = - 1 and similar expressions near x = -I- 1. Matching with the side layers 
determines the function B(p )  as 

m 

It ia seen that the Stewartson e* layer must serve a dual purpose. First, it 
requires an O( 1) term in a to balance the thermal wind at  r = 1. Secondly, it must 
provide a rechanneling of fluid from the bottom Ekman layer to the top one. The 
magnitude of the required flux is O($). Since the requirement 0 = O(1) forces $ 
to be a t  least O(E*), this leading term in $ represents a closed circulation within 
the Stewartson €4 layer. This situation is similar to that observed by Hunter 
(1967) and appears to be characteristic of many low Rossby number flows which 
are controlled by Ekman suction and have a non-trivial core angular velocity. In 
many problems this closed circulation may play only a passive role, but as we 
shall see, it is of importance in the present problem. 

In  order to calculate a perturbation correction to  the conduction profile, it is 
necessary to include the effects of convection in (2.9). Thus we set T = z + rpT0, 

(3.6) 
and obtain for T(l) vy,,, = - ( 4 - l h o h . ,  

q1) = 0, z = If: 1, 

and either i3Tf,)/i3r = 0, or T,) = 0, T = 1, where by $(o), we mean the solution 
$(o) = +o + I$ derived above. 

Since +(o) has components of the boundary-layer type, it follows that T(,) will 
also have boundary-layer components. The magnitude of T(,) is found by evalu- 
ating the source term in each region, which is O ( d )  in the core and Ekman layers, 
and O(e-I) in the Stewartson layer. Thus the boundary-layer behaviour of $(o) 
produces components of T(l) which are O ( d )  in the Stewartson layer, O ( d )  in 
the Ekman layers, as well as a component of O(E-4) with O( 1) variation due to the 
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core source term. For insulated walls, one would at first expect EL contribution of 
O(sf) from the Stewartson layer requiring a corresponding over-all contribution 
of this order, but this leading term in the side layer contributes no flux at the wall. 
As we shall see, this is due to the closed nature of the circulation in this layer to 
the lowest order. If 8 denotes the over-all component, it is obvious that it must 
satisfy 8 = 0 at z = f 1, since it swamps the Ekman contribution to T ( d .  Simi- 
lary, if r denotes the boundary-layer component of T(,) in the side layer, it is seen 
to satisfy 

which integrates simply to 
Tpp = “-%Y$p, (3.7) 

In  deriving the boundary conditions for 8 at r = 1, we must include the contri- 
butions from T. If the side walls are conducting, this condition is O( 1, z )  = 0, since 
8 is O ( d )  larger than T .  If the walls are insulated, however, the flux due to T is of 
the same magnitude as 0, for 

since $ ( O ,  z )  = - d / 2 4  from matching with the core. Thus for insulating walls, 

(3.10) 

we have I v28 = -2+4, Y 
e = o ,  x = + i ,  
e, = -~-$2/24 ( r  = 1). 

Inclusion of the boundary-layer components of T(l) is therefore necessary to set 
the problem for the over-all component 8, especially if the side walls are insulated. 
We will now treat the case of insulated walls in some detail. 

The boundary condition at  r = 1 reflects the fact that convection in the side 
layer due to the re-channeling of fluid is as important as convection in the core. 
As we shall see later, the closed circulation also influences the side-layer convec- 
tion, but is absent to this order in the perturbation. Since this re-channelling 
must always be present in a bounded system, the effect of side walls is quite 
striking and cannot be ignored. 

The solution for 8 is routine, and yields 

(3.11) 

The first term is recognized as the contribution to B which would arise if the 
cylinder were unbounded radially, and the second reflects the effect of side walls. 
It is of interest to see what effect 8 has upon the Nusselt number, defined here as 

and equal to one for pure conduction. Thus 

(3.12) 

Nu(*l) = 1Tu/3€-* 
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a result independent of y. The corresponding result for infinite coaxial disks 
which admits a similarity solution, in which T is independent of r ,  yields 

Nu( * 1) = 1 T 2 b p e - 4 .  

Contrasting these results illustrates the profound effect convection in the side 
layers can have on an enclosed flow of this sort. The vanishing of this correction 
to the Nusselt number is physically consistent, for noting that 0 is an even 
function of x ,  the flux across any plane is therefore odd in x .  Insulated side walls 
require that the average flux to the top and bottom plates be equal, which in 
turn requires the vanishing of 

independently of the aspect ratio, since 8 is even in 2 .  

The solutions for conducting walls are easily obtainable, but are not given 
here. However, as we have seen, the closed circulation induces a non-zero value 
of r at the wall which must be balanced by a contribution from the core. This 
correction is O($) smaller than with insulated walls; thus we see that the thermal 
conditionsimposed at  r = 1 are of primary importance in determining the solution. 

The perturbation may be carried on in a straightforward manner and, if this 
is done, the expansion is seen to be a power series in the parameter h = v/3s-g for 
all dependent variables. With the Rossby number /3 appropriately defined, this 
is the same critical parameter which appears in previous analyses of thermally 
driven rotating flows (Hunter 1967; Duncan 1966; Hudson 1968b), and can be 
interpreted as the ratio of convection to conduction in the core. Indeed, this 
parameter is expected to be of importance in any thermally driven, axisym- 
metric, low Rossby number flow which is governed by Ekman suction. Guided 
by the results of our perturbation analysis, we will be able to construct a solution 
for h = O( 1). However, there are two important modifications which arise in the 
higher-order terms. 

First, the side-layer force balance producing the Stewartson e) layer, i.e. 
viscous us. Coriolis, is valid only if the term Ay-12: can be ignored within this 
layer. This in turn implies h7Ae-B < 1 due to the boundary-layer behaviour of 
T. This is the same criterion deduced by Barcilon & Pedlosky ( 1 9 6 7 ~ )  and, if 
violated, requires the appearance of a ‘buoyancy layer’ replacing the Stewartson 
€4 layer. For the moment we shall assume AyAe-i < 1, but we will relax this 
condition in $ 7.  

Secondly, in the case of insulated walls, it  becomes necessary for the side layers 
to have a double structure of thicknesses €3 and €3. This modification is included 
in the development of the solution for h = O( 1)  given in $4. 

4. The solution for h = O(1) 
Using the results of the perturbation analysis, and treating h as an O( 1) para- 

meter, we seek a solution where T = 0 ( 1 )  everywhere with boundary-layer 
components of O(si), O ( d )  and O(s)  in the inner and outer side layers and Ekman 
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layers, respectively, v = O( 1 )  everywhere, and @ = O(sf)  in the core and Ekman 
layers, plus the O ( d )  closed circulation in the inner side layer. Thus with the 
inertial accelerations formally neglected, we must solve 

where 0 is the largest component of the temperature. With these assumed magni- 
tudes, neglect of the inertial terms is worst in the inner side layers, where the 
error is O(ps-4). 

In  the core, we have the thermal wind relation 

where h(r) is to be determined. The Ekman suction condition, which determines 
the core axial velocity from the values of the thermal wind at  the horizontal 
boundaries, may be written as 

Insertion of (4 .4)  into this relation, and using the fact that @ is independent of x 
in the core, we obtain for small A ,  

The energy equation in the core becomes 

- 2 m ,  = q 3 ;  14.7) 

and, since 8 is the largest component of the temperature, it must satisfy the 
conditions 

The conditions at  T = 1 require more discussion, since we have seen that 
boundary-layer components of the temperature may become equally important. 
To derive these conditions, we will formally solve the energy equation in the 
side layers in terms of 8. To do this all variables are expanded in powers of &. 
Thus for the over-all components, 

6 = + 1 ,  2 = + 1 .  

in the inner side layer 

B(r, z )  = 8, + &sOl + . . . . 
V(T ,  Z) = V ,  + &vl + . . . , I 

P ( p ,  2 )  = sQf, + E f f Z  + €3f3 + . . . 
$(p, 2 )  = "flp, + €-l+l + . . . ~ 

q p ,  2 )  = 0, + €'%al + . . . , 
(4.9) 
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and in the outer side layer 
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P = ( 1 - W &  

F(7,x)  = €&, + . . . , 
V(q,z )  = vo+ ..., 
$(7, 2 )  = "po+ ... , 

where 7 = (1 -.)Y/Ek 

- 
(4.10) 

It is convenient to discuss the velocities in the side layers first, and then proceed 
to a discussion of the energy equations. In  the Stewartsondlayer, the appropriate 
boundary-layer equations yield 

v, = 0 + O(€+), i jFz = E+vU1/ll. (4.11) 

Equations (4.11) are not valid within O ( d )  of the top and bottom, where the 
solutions in these Ekman extensions are 

v = E(q)[ l -  eF cost*], 
near x = + 1, and 

I (4.12) 

(4.13) 
v = F(q)[ - 1 + e-g cos 51, 

near x = - 1, where E(7) and F(7) approach zero as 7 -+a in order to match the 
Ekman layers. Solutions to (4.11) are 

v = C(q), p = E4[C"(7)Z+D(q)], 

and matching t o  the Ekman extensions requires 

E(r)  = - F(7)  = C(7), D(r)  = 0, - C"(7) = mw+, (4.14) 

relations which may be solved to  give 

v = 24C exp ( - 7/2*), ijF = s h 7 x  exp ( - r/2t), (4.15) 

where = C, + &Cl + . . . is an O( 1) constant of integration. 
The equations for the inner Stewartson layer are 

--OG = E - ~ G p p p p ,  GG = ei8pp, (4.16) 

(4.17) or, eliminating 8 ,we have gGZ + $pppppp = 0, 

with boundary conditions at p = 7 = 0, 

(4.18) 
= = "') 

v,+v^, = --O,(l,x), 

211 +a, = - O , ( L  x ) ,  $1 = $,, = 0, 
- 

with appropriate matching conditions at  x = 1. The closed circulation 

go + "hg, 
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vanishes at x = f 1, so we expand 

(4.19) 
nn m 

n= 1 
$ o + ~ h $ l =  x [gO,n@)+E-i'gl,n(P)1~in3 (z+1)*  

The functions, go&) and gl, &), satisfy 

6 3 (4.20) gi,n = ung.i,n (i = 0,1)7 un = inn, VI 

from (4.17). The boundary conditions for (4.20) are easily derivable, since 

Combining this with (4.15) and (4.18), we get 

gi,n(O) = d , n ( O )  = 0, 
nn 1 nn 
2 -1 2 

ea( 1 , 4  

s'ip,(o) = --j e,(i,z)cos-(z+l)az, 

for i = 0 , l .  The integrals for gi,,(p) are 

(4.21) 

(4.22) 

Up to this point we have determined the leading terms for the velocities in terms 
of the unknown function 8. This function satisfies the energy equation (4.7), with 
boundary conditions a t  r = 1 to be derived from a consideration of the energy 
equations in the side layers. For the outer layer we have 

(4.25) - or simply 

Similarily for the inner layers, the expansions (4.8)-(4.9) give 

T~ = - hyx23CO8,,( 1,  x )  exp ( - 7/23). 

(4.26) 

Now for conducting walls, 8,remains the largest component of the temperature, 
and satisfies 

- 2+h002 = vp,, 
8,= k 1 ,  z =  +I; 8 , = x ,  r = l .  

Furthermore, we deduce that 8, = 8, and 8, satisfies 

- 24h8,Z = V;8, (8, = 0, z ~f: l), 

8, = -$,(O,Z), ?" = 1.  

(4.27) 

(4.28) 
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In the case of insulated walls, we have 
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80, = y[+1,,lIr=0 + +3Pl p-0' (4.29) 

and the problem for 8, becomes, 

where we have made use of the fact that 

$,(O, 2 )  + cox = - 1/2% (4.31) 

Note that the form of the boundary condition (4.29) restricts the range of 
y to y = O( l), whereas in the case of conducting walls it may be shown that the 
results are valid for y < O(E-*). The effect of the closed circulation @,, as well 
as the re-channelling of fluid, is felt directly in the case of insulated walls, for it 
appears in the boundary conditions for 8,. For conducting walls, this circulation 
requires an O ( d )  correction to O,, which would be absent if the side wall layers 
were not considered. In  both cases we see that the inclusion of side layers leads 
to  substantial effects and renders suspect theories which a priori neglect lateral 
boundaries. 

5. The solution for conducting walls 
The solution for this case is easily obtained, since the leading term 8, uncouples 

from the closed circulation $o which it produces. For the solution of (4.27) we 
set 8, = x + @(r,  x )  and thus obtain 

(5.1) } 
- 24A( 1 + az) = v; a, 

@ = O ,  z = k l ,  @ = O ,  r = l .  

If we then assume the Fourier-Bessel representations, 
m m 

Q, = I: @n(z)Jo(anr), 1 = C bnJo(anr), (5.2) 
n= 1 n = l  

where Jo(an) = 0 (n = 1,2 ...), 

(5.1) yields an ordinary differential equation for the a,@), to be solved with the 
conditions Qn( f 1) = 0. These solutions are 

Q,,(x) = a,+ exp (r,+ z )  +a; exp (r; z )  + 24h(an/y)-2b,, (5.3) 
where 6, = 2/anJ1(an), 

r$ = { - 4 2 ) i  t- [2Az + 4(a,/y)2]4]/2, 
a; = f Z)hb,(~,/y)-~ sinh (rz)/sinh (r: - r ; ) .  

Evaluation of the leading contribution to the Nusselt number, 
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gives 
O3 r,' sinh (r;)  exp ( rf: r;)  -r; sinh (r:) exp ( -t r;)  

cx; sinh (r: - r; ) 
flu(')( 1) = 1 + 4(2)*hya , 

n-1 

(5.4) 
which for y+co yields the explicit sum 

The results of numerical evaluation of the series are shown in figure 1. Note that 
at  even moderate values of A, the flux from the top plate falls toward zero, while 
the flux to  the bottom plate increases significantly withincreasing A. These results 
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FIGURE 1. Zeroth-order Nusselt numbers for conducting side walls. 

correspond to the gradual appearance of a 'thermal layer ' near the bottom plate 
while the core temperature approaches that of the top plate, Hudson (1968b). 
Indeed, for y -+ 00, (5.5) gives results identical to the similarity solution for infinite 
disks for large A, Hudson (1968b), and reduces to the perturbation result 

(5.6) Nzc"( +_ 1) = 1 T 2+A 

for small A. As we have seen, these results are physically admissible, since the flux 
from the top need not balance that to the bottom. 

Although the isotherms are swept down in the core, 0, is (locally) an odd 
function of z in the side layers, since the condition So( 1, z)  = z is valid for all A. 
Hence the solution for the side layers is identical to the flow due to conduction 
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and the €3 outer layer does not appear here. The leading terms in the inner layer 
are given by (3.4), which then sets the problem for 8,) since the condition 

2 -  

1 -  
h 
3 

+I 
Y - 

r(0 

-3 a 
0 

I I I I I 

- 
’ Nu(:) (- 1) 

- 

4 1  CQ Nu(:) ($1) 

6. The solution for insulated walls 
From the results of $4, 8, satisfies (4.30). Using the fact that 

we may eliminate .f, fkom the boundary condition to obtain (after one integration 

This is a non-linear problem, since $, is coupled to 8, through the value of the 
thermal wind at r = 1. Indeed, $. arises solely from the requirement that 
a = O( 1) t o  balance this thermal wind within the e* layer. Expansion in powers of 
h linearizes the problem, but soon runs into trouble due to the complicated in- 
tegrals appearing in the boundary conditions and the increasing complexity of 
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the convection term in (4.30). Thus any solution will in general be numerical. 
We set 8 = z + @(r, z )  to obtain 

-2+A( l+@J = Vz,@ (@ = 0, 2 = -t l ) ,  

Consider now the Sturm-Liouville system 

x;: + 24AX; = -p2 PXZ, (XJ 1) = O), (6.4) 

with h given. The resulting eigenfunctions and eigenvalues are 

By the usual'sturm-Liouville theorems, these eigenfunctions form a complete 
set on ( - 1 , l )  with the orthogonality property 

"1 

where is the Kronecker delta. We now assume the series representations, 
m m 

n=l  n=l  
@ = C @n(r)Xn(z), 1 = C anXn(z), (6.7) 

which, when substituted into the fist of (6.3), yield a differential equation for 
Qn whose solution gives, 

We conclude that dn = 0 since the region is simply connected, and the cn are then 
determined by the remaining boundary condition at r = 1, 

If we then multiply (6.9) by exp ( ~ * A Z ) X ~ ( Z )  and integrate from - 1 to  1, an 
infinite set of non-linear algebraic equations for the cn is generated. This set was 
programmed for iterative solution on an IBM 7094, truncated and solved. It is to 
be emphasized that all of the integrals arising on the right-hand side of (6.9) were 
evaluated analytically and were furnished as input data for the program. Only 
the cn were obtained numerically. The iteration was started by assuming 
@ = $,, = 0 on the right-hand side of (6.9), which gave an initial guess for the 
cn. Further estimates were then computed by evaluating the entire right-hand 
side using the previous values of the cn. Enough terms were included to ensure the 
accuracy of the leading coegcients, and in general fewer than 20 iterations were 
necessary for convergence of the estimates. The results are given in table 1 for 
h = 0.5 and 1.0 for an aspect ratio of 1. 
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Shown in figure 3 are the temperature profiles for these two values of A. The 
profiles are swept downward in the core due to unidirectional convection there 
and are similarily swept upwards near the sides; this reflects the effect of the re- 
channeling of fluid along these walls. 

T = 0.5 

-1.0 
0 0.2 0.4 0.6 0.8 1 .o 

r 
FIGURE 3. Temperature profiles for the case of insulated side walls for y = 1.0. 

-, h = 0.5; - - -, h = 1.0. 

Although the series for 0 converges satisfactorily, the differentiated series for 
(De(r, ? 1) converges only slowly, so that no values of the Nusselt number for 
insulated walls are obtainable by this method. An expansion in A, however, 
indicates that for small A, 

where S(y) is a function of y alone. 
N U ( *  1) = i + ~ ( y p + o ( ~ * ) ,  

7. The solution for A B d 
As noted in $3,  the restriction A y A d  < 1 was necessary to maintain the 

balance between viscous and Coriolis forces which produces the Stewartson d 
layer. If for A, y = O(1) we reverse the condition, i.e. consider eQ < A < 1, the 
structure of the side layers also changes. This illustrates the fact that when con- 
structing an asymptotic (boundary-layer) solution when two parameters ( A  and 
e )  approach zero simultaneously, the solution often depends criticalIy upon their 
ratio. Furthermore, the exact condition can be deduced from the differential 
equations only after a solution has been constructed. 
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Including the effects of buoyancy in the side layers, we must treat the approxi- 
- mate set 

where we have assumed T < O(1) in (7.3). The Stewartson €4 layer will again 
appear, since it arises solely from the requirements (from the core) that V = O( 1)  
and ‘;t. = O(E*). A balance between buoyancy and viscous terms in (7.1) yields a 
‘buoyancy layer’ of thickness e*/(v/3A)* similar to that found in Barcilon & 
Pedlosky ( 1 9 6 7 4 .  The scaling in this layer is 

Because the O(1) thermal wind must be balanced by boundary-layer contri- 
butions having suffioiently arbitrary z variation, a third balance in (7.1) is 
necessary between the Coriolis and buoyancy terms. This third balance leads to a 
‘hydrostatic’ layer of thickness O(v/3A)*, i.e. an intermediate layer between the 
E* and buoyancy layers. This triple structure is similar to the situation found in 
Barcilon & Pedlosky (1967 u), but, as in the case A < d treatedin 9 4, there arises 
a closed circulation of O(s/a/3A) > O(s*) due to the balancing of the O( 1) thermal 
wind within the hydrostatic layer. 

In this case, it can be shown that the asymptotic expansion is in powers of 
Ahather than Ei% in the case of Coriolis domination of the side layers. We further 
remark that when A - E*, the hydrostatic and buoyancy layers merge into a 
single layer of O(e%), the closed circulation becomes O(&, and the expansion is 
again in esa.; but we only treat the two limiting cases, A $ d. When the formal 
expansions are substituted into the pertinent boundary-layer equations and like 
powers of A equated, the formulation is quite similar to that obtained in $ 4 with 
one important modification: although there is a closed circulation, it has only a 
minor effect on the boundary conditions for 8,. In  the case of conducting walls, 
it  induces a correction to the zeroth-order results of $ 5  (which remain valid) of 
only O([Crp/A]*) < eg. I n  the case of insulated walls, this circulation does not 
appear in the boundary condition for 8%, which is 

This reflects only the convection due to the re-channelling of fluid, which of 
course must always be present. Thus for A $ d, convection in the side layers 
remains important, but the closed circulation plays a passive role. 

Since 8, still satisfies the first two of (4.30), we again assume 

8, = z+ @(r ,z )  = z + X  Qn(r)Xn(z) ,  
n 

where 
4 Fluid Mech. 35 
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and then the transformed boundary condition at r = 1 yields the infinite set of 
linear algebraic equations for the cn, 

where 

In  this case the numerical solution was much easier; the set was truncated and 
solved by a simple matrix inversion. The cn for this case were calculated taking 
progressively more terms until the leading terms showed no dependence upon the 
order of the system. In  this way an initial estimate of the number of terms 

I 

h = 0.5 
-0.257 (00) 

0.795 (- 2) 
-0.194 (-2) 

0.141 (-3) 
-0.402 ( - 4 )  

0.376 ( -  5) 
- 0.109 ( - 5) 

0.117 (-6) 
- 0.339 ( - 7) 

0.397 ( -  8) 
-0.115 (-8) 

0.146 ( -  9) 
- 0.427 ( -  10) 

0.587 ( -  11) 
-0.167 ( -  11) 

A < E* 
A > 

h = 1.0 
-0.438 (00) 

0.277 (-1) 
- 0.512 (- 2) 

0.600 ( -  3) 
- 0.129 ( - 3) 

0.177 (-4) 
-0.410 (-5) 

0.606 (-6) 
-0.144 (-6) 

0.204 ( - 7) 
- 0.499 ( - 8) 

0.847 ( -  9) 
- 0.306 ( -  9) 

0.702 ( -  10) 
-0.163 ( -  10) 

TABLE 1. The cd for y = 1-0 

A % B* 
h = 1.0 

-0.440 (00) 
0.262 ( -  1) 

- 0.436 ( - 2) 
0.511 (-3) 

-0.997 (-4) 
0.142 (-4) 

- 0.288 ( -  5) 
0.448 ( - 6) 

-0.924 ( -  7) 
0.152 ( -  7) 

-0'316 (-8) 
0'540 ( -  9) 

-0.113 (-9) 
0.198 ( -  10) 

- 0.413 ( -  11) 

necessary for the accurate solution of the more complicated non-linear set of 
0 6 was obtained. The c, for h = 1, y = 1 are tabulated in table 1, and comparison 
with the coefficients for A % e* shows that the two solutions are nearly identical. 
Although not shown here, the isotherms for A < d, h = y = 1.0 exhibit a slightly 
more pronounced upsweep near the side walls compared to the results in figure 1 
for h = 1.0. The difference is of the order of 3 % or less and is due to  the absence 
of the closed circulation to this order. Hence, although the structure of the viscous 
side layers is radically different in the two cases A $ €6, the main effect of these 
layers upon the over-all temperature arises from the necessary rechannelling of 
fluid from bottom to  top. 

Because of the numerical simplicity of the method used to solve (7.5)) many 
more coefficients than necessary for adequate representation of the temperature 
could be computed in hopes of obtaining Nusselt numbers for the insulated case, 
given by 
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The maximum number of terms which could be handled with the machine storage 
available was approximately 125, and it was found that the truncated series 
(7.6) converged well only for values of h and y such that the product hy was 
not much greater than 1.0. Nusselt numbers were computed for h = 0.01 and 
0.1, 1 < y Q 10 and the four cases h = 0.5, 1.0, y = 1, 2. The results for small h 
were fitted to an expression of the form 
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?. 
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0 2 4 6 8 10 

Y 
FIGURE 4. The function S(y) for A > d. 

suggested by the theory. It may be noted that the series (7.6) evaluated both at  
z = T 1 gave identical results as required from physical considerations. X(y),  
obtained from the numerical results, is shown in figure 4 and is very nearly a 
linear function of y. From comparison with results computed for higher values of 
h it is believed that neglect of the O(h4) term in (7.7) yields Nusselt numbers in 
error by less than 10% for h only slightly less than 1.0. 

8. Conclusions 
We have considered thermal convection in a rotating cylinder of fluid heated 

from above and strongly influenced by the centrifugal acceleration. The hori- 
zontal Ekman layers were found to control the axial flow in the inviscid core, 
and the solution depends upon the thermal conditions at the side walls. For in- 
sulated walls, convection due to the re-channelling of fluid from the bottom to the 
top Ekman layer is as important as convection in the core, and the neglect of side 
walls leads to spurious results. For conducting walls, the similarity solution 
properly represents the solution in the double limit, E + 0,  y+m, with the effect 
of side walls appearing as a second-order correction to the zeroth-order results. 

4-2 
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Because of the strong influence of the Ekman layers, the zeroth-order solutions 
for both insulated and conducting side walls are found to depend upon g, /3 and E 

only in the group h = r~/3e-&. 
For situations such that hyA < EQ (or in a zero-gravity field) gravitational 

buoyancy has no effect upon the dynamics, whereas for A > d,  A, y = 0(1) ,  it  
has a definite but local effect upon the side layers; that the effect is local was 
demonstrated a posteriori, since the over-all temperature for the cases A $ BQ 

differed only slightly. Solutions have been presented for the range E < 1, A < 1, 
p < €4, h < O(1) and 

y = O( 1) (insulated walls), y 6 Ole-&) (conducting walls), 

with emphasis on the Nusselt number whenever possible. Actual computation of 
the heat transfer for conducting walls and for certain cases of insulated walls was 
possible, and from these results it is concluded that the heat transfer may be 
considerably augmented by rotation. 

This study was supported in part by a National Science Foundation Trainee- 
ship for one of the authors (G. M. H.). 
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